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Abstract. In this paper, we treat the Hurwitz stability criterion for a convex
fuzzy set of matrices represented by autonomous linear time invariants systems.
We give necessary and sufficient conditions to assure the Hurwitz conditions in
order to attest the existence of a common quadratic Lyapunov function in an ar-
bitrary set of matrices, associated by a fuzzy set.
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1 Introduction

This paper discusses the problem of find the negative roots of a set of matrices, in
order to assure the stability conditions for a stable performance of a switched system
ZA, by a pair of linear subsystems XA, and ZA;. We consider the problem of verifying
the stability of a convex set K of matrices, more specifically in an interval matrix.
These results are motivated by the fact of obtain a stable performance of the fuzzy
switched systems, minimize the energy dissipated and to preserve the stability proper-
ties in all the switched actions [12], [2], [9], [4]). We assure the stable performance for
the convex set of matrices in its pencil. The matrices treated in the pencil, belong to
linear time-invariant systems x(¢) = Ax(r) where the parametric matrix A€ K, and the

system resultant after the switched actions, is considered a linear time-variant system
x(f) = A.x(t) - In this paper, we give necessary and sufficient conditions in K.

By a switched system, we mean a hybrid dynamical system consisting of a family of
continuous-time subsystems and rules that orchestrates the switching between them.

Switching systems have numerous applications in control of mechanical systems, the
automotive industry, aircraft and air traffic control, switching power converters and
many others fields. In the last few years, every major control conference has had sev-
eral regular and invited sessions on switching systems and control (7], [10].

* This work was supported by the Instituto Politécnico Nacional — México under the program
SUPERA-ANUIES, COFAA-IPN and COTEPABE-IPN.
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We assume that the states of the Switched Fuzzy System (SFS), does not jump at the
switching instant, i.e., the solution x(-) is every where continuous. The systems XA,

and XA; are continuous, and in the Switching Action (SA) there are interrupted by
switching signals then, the switched system resulting is every where continuous.

The stability conditions for the pencil of matrices, are not in terms of the Lyapunoy
equation, there are exposed by Hurwitz stability criterion. This criterion is useful to
establish fundaments to demonstrate the existence of a common quadratic Lyapunoy
function (CQLF) in an arbitrary compact convex sets, including the interval of matri-
ces. A general result is given for matrices of n order.

Here, we do not treat extensively with the continuous fuzzy systems, we only utilize
some notation and ideas. For more information about fuzzy systems, see [16], [12].

This paper is organized as follows, in section 2, we give some mathematical prelimi-
naries and definitions. In section 3 , we present the principal results by a set of theo-
rems and, finally the section 4 is about the conclusions.

2 Preliminaries
Consider the dynamical system
T= Ar, A€ K E{A),As ..., An} (1)

where A4;, i={1,2,...,m}, are constant matrices in R™". The matrices A;, are assumed
Hurwitz'. An important problem is to determine necessary and sufficient conditions
for assure that a pencil of Hurwitz matrices nxn is Hurwitz in its interval (the SFS ZA,
resultant are for an arbitrary switching sequence Hurwitz). This result is showed in the
theorems 5 and 6 for the case 2x2 and nxn respectively. Hence, the existence of such
conditions are sufficient to guarantee the uniform asymptotic (exponential) stability of
the switching system, compose by elements of the set 4.

Definition 1. The switched matrix is:

A(l) = (3%—1'—1’:’;—”—’) )

where i#j and i,je {1,...,m}, m is the number of systems in the phase plane, xe R™! is
the state vector, and the matrices Aje R™ each linear component is called subsystem,
furthermore w;=(1-w;). We can see from (2) that it is possible to represent a switched
fuzzy system like Takagi-Sugeno a fuzzy model [5], [16], then

! The eigenvalues of cach A; matrix lies in the open left half of the complex plane, denoted C;
at times, for clarity, we also refer to this as an asymptotically stable matrix.
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3l
_ _Z:w w; A,(2)z(t)
By | — (3)
w!
1=i(5)
where ije { 1,2,...,m}, and each linear component of A4,(1)x(1) is called subsystem.
Thus, if w,€[0,1] , then we can write (2) as

A (1) = (wid; + (1~ w;)A;) (4)
thence, the pencil of matrices is
Oyw [Aia AJ] = Ax(t) (5)

Definition 2 A switched fuzzy system (SFS) T, is an autonomous time-
varying system defined by

z (t) = A:(t)z(2) (6)
where A,(t) will be is considered continuous for all &.

Definition 3 A fuzzy switching action (FSA) is defined like the change of
dynamic between two linear autonomous time-invariant systems L4, and L4,
who are components of L4, .

With the FSA, we can jump between the fuzzy sets of £4, ,i = {1,2,...,m}
in the phase plan R**™. Then a FSA can be represented by the equation (2).

Definition 4 A fuzzy subset FC of R™ is said to be convez if

(w:'AiI +ij_.,-) c Fe Ko

wi + W

whenever {A;, A;} € FC, {w;,w;} C w, and w € [0,1]. The convex fuzzy
sets have to contain, along with any two distinct matrices A; or A;j, a certain
portion of the line trough A; and A;, thus

w;A; + ‘ijj
wi + w;

we [0,1]}
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3 Stability conditions

We will consider under the assumption that all the individual subsystemg B
asymptotically stables. Basically, we will find that the stability is engypg q
if the FSA is well proposed. These conditions are in terms of convex linear
combinations of matrices A; and A;.

An important problem is to determine necessary and sufficient conditiong
for the existence of a quadratic Lyapunov function V(z) = TPz, P= pPT 0,
such that its time derivative along any trajectory of the system (2) is negative
definite, or alternatively that,

ATP+ PA;=-Q: (8)

where the matrices Q; are symmetric and positive definite. The existence
of such Lyapunov function is sufficient to guarantee the uniform asymptotic
stability of switching system (2).
However, the conclusions we reached about the stable equilibrium of the
system can also be reached by using energy concepts.

In the following discussion we attempt to determine a common Lyapunov
function of the form

V(z)=zTPz (9)
where £ € R™*™,

In this section, necessary and sufficient conditions are derived in order to
assure the existence of a common quadratic Lyapunov function for a finite
number of n order linear time-invariant systems.

Lemma 1 If P is a positive definite common matriz, such that

ATP+PA; <0 and ATP+PA; <0, - (10)
where A;, A;, P € R™*", then from (2), we can write
s AR T A A
(w + w_,A_,) P4+p (w,A; +wJAJ) 2 (11)
w; + w; w; + Wy

Yw € [0, 1].

Proof: since P is a positive definite matrix, and (%ﬁl) <0,Vwe
(0,1], so (11) is fulfilled. ’
Is well know that if the Lyapunov’s condition
ATP+PA,=-Q (12)

is fulfilled, the switched system 4. is stable for some P = PT > 0.



Stability analysis for switched systems 255

Theorem 2 A matriz A, is Hurwitz
there ezist P = PT > 0 such that

if and only if for every nonzero vector
=7 (ATP+ PA,)z <0 (13)

P-ror-Jf.' If A, is.HurWit.z Yw € [0,1], then (12)=(13) otherwise (13) is vi-
olated if T is an eigenvector corresponding to an unstable eigenvalue of A4,.

Theorem 3 The equilibrium of a fuzzy switched system

i () = (M) 2(2) (14)

w; + w;

is globally asymptotically stable if there exists a common positive definite
matrix P for all the subsystems such that

ATP 4+ P4, <0 (15)

Proof: Consider the scalar function V(z(t)) such that V(z(t)) = z7(t) Pz(t),
where P is a positive definite matrix, then

V (z(t)) =z (t)T Pz(t) + =(t)TP z (t)

=z(t)T (ATP + PA,) z(t)
= 2(1)" ( (2dduts)” py p(2dumd) ) (2

= z(t)T ( — (w;ATP + w; AT P + w;PA; + w;PA;) ) z(t)

witw,
= gty (@) (wi (ATP + PA;) + w; (ATP + PA;) )z(t)

where w;, w; € [0,1], for 7,5 € {1,2,...,m}.
From Lemma 1 and equation (15), we obtain

V (z(t)) <0
Then, V(z(t)) is a Lyapunov function and the fuzzy switched system (14)
is globally asymptotically stable.
Theorem 4 Let £4 = {Z4,,Z 42,24, } be a set of stable systems with a
CQLF. Since the matriz A, is composed by pairs of elements of X4, then A,
is Hurwitz and £ 4, is stable Ywy € [0, 1] for any fuzzy switching sequence.
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Proof: Since V(:r:) is a QLF for £4,, £4,and Xa,, then V(z) will be a QLF
for ©4,. Then L4, is stable, and the matrix A, is Hurwitz Vw € [0, 1] then,
V(z) is a CQLF. If A, is not Hurwitz for any w, then a CQLF can not exigg
for £4,, Ta,and T4, thus a necessary condition for the existence of a CQLp
for £4,, Z4,and T4, is that the matrix A, be Hurwitz Yw.

Theorem 5 Let A; and A; be two Hurwilz matrices inR2*2, A necessary and
sufficient condition for the dynamic systems L4, and L4, to have a quadratic
Lyapunov function that the matrices A;A; and A; A"1 do not have real negatiye

eigenvalues. An equivalent condition is that the penczls owlAi Aj], oy [A" A= 1]
are both Hurwitz for w € [0,1].

Proof: The necessity can be directly obtained by theorem 3. The implica.
tion is showing that a sufficient condition for the matrix pencil oy, [4;, 4] to
be Hurwitz is that both A; and A; are Hurwitz, and that the matrix A4; A7 1
has no real negative eigenvalues [17] [14].

The matrix pencil o, [A;, A;] has the next characteristic polynomial
det (\I — 0y, [A;, A;]) = A% = A(trace (0w [Ai, 45])) + det (0., [4;, 45]) = 0
The pencil fulfill the Hurwitz conditions for all w € [0, 1] if and only if:
a) trace(oy [Ai, Aj}) <0 and
b) det(oy [Ai, Aj]) > 0.

It follows that the condition e) is satisfied if both A; and A; are Hurwitz,
Thus for b), we have that the equation for the determinant can be written as

det (0, [4i, 4;]) = det (w; 4; + (1 — w;)A;)

= w?det (vI + AgA;l) det (4;) (16)

with v = (1 - w;) /w; for w; € [0,1]. Due to A; is Hurwitz, then the
eigenvalues of det (A;) are negatlve so, det (A4;) is posmve In order to know
the eigenvalues for (‘71 + AiA3), we set 9 = A;ATY,

det (7] +9) = 2 + v (trace (9)) + det (¥) = 0

The conditions to accomplish for the latter equation is that the eigenvalues
have no real negative parts, then

trace(¥) >0 and det(d) >0 (17)

by determinants, we will analyze the conditions for ¥

det (M — 9) = A% — A(trace (¥)) + det(¥) =0 (18)
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therefore by Routh theorem [6], we can see that the equation given above
only acce.pt positive eigenvalues, in fact we can establish differents conditions
by Hurwitz theorem, Descartes’ sign rule, etc., [6]. Then from (18), we have

trace (9) > 0 and det(¥) > 0, then (18) is satisfied and det (vI+9) > 0.
Finally, the eigenvalues of det (71 + A,-AJT l) are positive, then are positive also

for (16), so the condition b) is accomplished; in other words the matrix A.-A;l,
has no real negative eigenvalues.

Remark 1 In the last proof, we utilise the condition (17), but is easy to see
that we cen analyse some others differents cases, for ezample:

trace(9) >0 and det(¥)>0 and |det(I)|> |trace ()|,
trace(9) >0 and det(¥) <0 and |det(¥)| < [trace(¥)],
trace(9) <0 and det(¥9) <0 and |det(?)|+ |trace (¥)| <7,
etc...

The next theorem is an extension of the above result, where the matrices
are in R™**",

Theorem 6 Let A; and A; be two Hurwitz matrices in R"*™. A necessary and
sufficient condition for the dynamic systems £ 4, and L4, to have a quadratic
Lyapunov function is that the matrices A;A; and A;A;' do not have real
negative eigenvalues. An equivalent condition is that the pencils oy, [A;, Aj],
ow [Ai, AJTI] are both Hurwitz for w € [0, 1].

Proof: In this proof, the necessity is in a similar way as the latter. So, for
the necessity, we have that the conditions of equation (16), show that A; is
Hurwitz, then sign(det(A;)) = sign(oy [Ai, A;]) = (-1)7, if

det (7] +9) > 0 (19)

det(yI +9) = "

+ym1 Z i

=1
n
) i Gij5
ik o o e
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i 9i5 ik

n g
+ 3y S Z gii 955 Gk

i=1i<g i<j<k| Gki Gkj OGkk

+ (9]
g1 - g1 n
where 9 = ! a4 . We know that det (AT +9) = ] (A - A;)
i . | /)y
gal1 ' Gnn

then we can replace the determinants by the product of eigenvalues, so

det(AI — 9) = A" A"
n
—\n-1 zﬂ: 9ii —)\n-1 Z pYi
i=1 i=1
n s v
+An—2 E z 9ii 91_7 = +An—2 Z Ail Aiz"'Afn-z
i=1j<i| 93¢ 935 i1 <i2<...<in_2
n gii 9i5 Gik 5
XTI 2 | G 9 9 S 3 M
i=11<71<5<k ki Gkj Ok 11<12<...<1n—3
+ || . W0 TS,

(20)

then, if we apply the next equality

det (ow [A;,Aj]'i) = det (wiA]* + (1 — w;) A}) = det (477) det (7] + 9*)
(21)
where, i = {1,2,...,n} and, #i is the i — th cofactor of det(-). We can visual-
ize the eigenvalues by cofactors, thus if all the cofactors of det (A,-A;l) s 0, so0
det (v +9°') > 0 therefore sign (det (A3)) is equal to sign (det. (cr,,, [A;, Aj]'i)) .
Finally as A; is Hurwitz, then the pencil (o (4, 4;]") is Hurwitz,
Remark 2 As well as we seen in remark (1), in this proof the possibility of

combination of cases to analyse, is augmented due to the quentity of implied
variables.

Corollary 7 If A; and A; are lwo Hurwitz matrices then A, is Hurwitz Vwy €
[0,1]

Proof: By equation (2), we have a displacement of eigenvalues governed by
the values of w. We have a movement from the eigenvalues of A; to them of
A; and viceversa. For example and with loss of generality, if w has a variation
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from.w,- =1, w; = 0tow; =0, w; = 1, the system A, has a displacement form
the eigenvalues of A; to them of Aj, therefore A, keep up the eigenvalues with
negative real parts. Hence A, is also Hurwitz Yw, € [0, 1].

Theorem 8 A necessary and sufficient condition for the ezistence of a CQLF
Jor the systems A; and Aj, is that A, be Hurwitz Vw, € [0,1].

Proof:

(=) Let a V(z) be a CQLF for A; and A; then, there exists a matrix
P = PT > 0 such that:

iA; AT A A
ZT[(w tw; J) p+p(w)]x<g

w; + w; w; + w;

for all z € R™ and w € [0, 1]. However we know from definition 3, that a
FSA is a change of the dynamic of X4, to the dynamic of X4, and, in addition
if a CQLF exists, the stability conditions in sense Lyapunov are preserved in
the switching action. So, for the switching sequences where £ 4, and Ya, are
involved, the stability conditions are preserved. Therefore we can say that E Acr
is stable for all switching sequence with £4; and £, , as components.

(¢«=) Let A; be not Hurwitz then, all FSA carries the 4, to a unstable

dynamique. So that, either A; or A; or both are unstables then, a P matrix
where:

w;A; + ‘ijj TP +P w; A; + IUjAz' <0
w; + wj w; + w;

P = PT > 0 does not exists, hence 4, is unstable, therefore V,(z) does
not exists, so a common P does not exists and, finally a CQLF for the dual
switching system where A; and A; are involved, does not exists.

4 Conclusions

In this paper, we give necessary and sufficient conditions for assure a convex solution
in order to find a CQLF in a set A (see equation (1)). This convex solution is estab-
lished for Hurwitz matrices and eigenvalues. A stable solution is guarantee for a

switched dynamic who belong to an interval established by Hurwitz matrices in its
extremes.

The above arguments formally show, that the domain into convex solutions where we
can find a quadratic Lyapunov function, has a derivative negative definite along the
trajectories of the system, p(x)<0-
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We have seen that a switched system might become stable for fuzzy switching signals.
One way to address this problem is to make sure that the interval between fuzzy

switching actions is convex. -
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